Pengaruh Protein CSN1S2 dari Susu dan Yogurt Kambing Peranakan Ethawah Terhadap Komposisi Mikrobiota pada Feses Tikus RA-CFA

Authors

  • Adhya Dava Aligarh Yahya Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Brawijaya, Indonesia
  • Eko Suyanto 1)Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Brawijaya, Indonesia 2) Pusat Studi SMONAGENES, Universitas Brawijaya, Indonesia
  • Fatchiyah Fatchiyah 1)Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Brawijaya, Indonesia 2) Pusat Studi SMONAGENES, Universitas Brawijaya, Indonesia

DOI:

https://doi.org/10.21776/ub.biotropika.2020.008.02.06

Abstract

Rheumatoid arthritis (RA) merupakan salah satu penyakit autoimun yang menyebabkan inflamasi pada jaringan sinovial. Prevalensi RA semakin meningkat setiap tahunnya dan berpotensi menghambat produktivitas. Komposisi mikrobiota merupakan salah satu faktor lingkungan yang mempengaruhi perkembangan penyakit RA. Tujuan penelitian ini adalah untuk mengamati efek pemberian protein CSN1S2 susu dan yogurt peranakan Ethawah terhadap komposisi mikrobiota pada usus tikus rheumatoid arthritis yang diinduksi Complete Freund’s Adjuvant (CFA). Tikus dibagi menjadi dua model yakni kontrol dan RA yang masing – masing diberi perlakukan protein CSN1S2 susu dan yogurt. Feses yang diperoleh lalu dianalisis total koloni bakteri, isolasi bakteri, karakterisasi, perhitungan indeks Simpson, isolasi DNA bakteri dan amplifikasi gen 16S sRNA. Hasil menunjukkan bahwa pemberian protein CSN1S2 pada model hewan mempengaruhi komposisi bakteri dengan peningkatan jumlah koloni bakteri pada kelompok RAM dan RAY. Pada perlakuan kontrol dan RA didominasi oleh kelompok bakteri Lactobacillus berdasarkan analisis gen 16S rRNA. Kelompok Lactobacillus lebih banyak ditemukan pada perlakuan kontrol dibandingkan RA. Lactobacillus berperan dalam mempengaruhi perkembangan penyakit RA, serta mampu menghambat bakteri patogen dari golongan Clostridium dan Enterococcus, ini bergantung pada tingkat spesies bakteri tersebut.

Author Biography

Adhya Dava Aligarh Yahya, Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Brawijaya, Indonesia

the first rank

References

Baas H, Romero FG, Montiel JM, Pizano ZA, Garcia MM, Ramírez DN (2017) Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. Journal Immunol 4835189. doi: 10.1155/2017/4835189.

Halpern MT, Cifaldi MA, Kvien TK (2009) Impact of adalimumab on work participation in rheumatoid arthritis: comparison of an open-label extension study and a registrybased control group. Ann Rheum Dis 68: 930 – 937. doi:10.1136/ard.2008.092734.

RISKESDAS (2018) Hasil Utama Riskesdas. 2018. www.depkes.go.id. Accessed: April 2020.

Wu HJ, Ivanov II, Darce J (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32(6): 815–827. doi:10.1016/j.immuni.2010.06.001.

Asquith M, Elewaut D, Lin P, Rosenbaum, JT (2014) The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract. Res. Clin. Rheumatol 28: 687–702. doi: 10.1016/j.berh.2014.10.018.

Luckey JD, Gomez A, Murray J, White B, Taneja V (2013) Bugs & us: the role of the gut in autoimmunity. The Indian Journal of Medical Research 138 (5): 732– 743.

Inohara I, Chamaillard M, McDonald C (2005) NOD-LRR protein: role in host-microbial interactions and inflammatory disease. Annual Review of Biochemistry 74: 355 – 383. DOI: 10.1146/annurev.biochem.74.082803.13334.

Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. U.S.A 107: 12204–12209. doi:10. 1073/pnas.0909122107//DCSupplemental.

Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, Huttenhower C, Littman DR (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2: e01202. doi:10.7554/eLife.01202.

Zhang X, Zhang D, Jia H (2015) The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med 21: 895–905. DOI: 10.1038/nm.3914.

Pickard JM, Zeng MY, Caruso R., Núñez G (2017) Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279: (1):70–89. doi:10.1111/imr.12567.

Wang Z, Jiang S, Ma C, Huo D, Peng Q, Shao Y, Zhang J (2018) Evaluation of the nutrition and function of cow and goat milk based on intestinal microbiota by metagenomic analysis. Food & Function 9(4): 2320–2327. doi: 10.1039/c7fo01780d.

Rozila I, Ezni S, Lani MN, Sharina MD, Siti HM, Asma H, Sharida MD (2012) Antibacterial activity of lactic acid bacteria isolated from goats’ milk. International Annual Symposium on Sustainability Science and Management: 09-11 Juli 2012; Terengganu, Malaysia.

Mukhopadhya A, Noronha N, Bahar B, Ryan MT, Murray BA, Kelly PM (2014) Anti-inflammatory effects of a casein hydrolysate and its peptide enriched fractions on TNF αα-challenged Caco-2 cells and LPS-challenged porcine colonic explants. Food Sci Nutr 2(6): 712-23. doi: 10.1002/fsn3.153.

Rohmah RN, Widjajanto E, Fatchiyah F (2015) Protective effect of CSN1S2 protein of goat milk on ileum microstructure and inflammation in rat-CFA induced rheumatoid arthritis. Asian Pacific Journal of Tropical Disease 5(7): 564-568. doi: 10.1016/S2222-1808(15)60837-4.

Lee JY, Mannaa M, Kim Y, Seo YS (2019) Comparative Analysis of Fecal Microbiota Composition Between Rheumatoid Arthritis and Osteoarthritis Patients. Genes 10 (748): 1-14.

Bibi F, Ali Z (2013) Measurement of diversity indices of Avian communities at Taunsa barrage wildlife sanctuary, Pakistan. The Journal of Animal Planet & Sciences 23(2): 469-474.

Fatchiyah, Arumingtyas EL, Widyarti S, Rahayu S (2011) Biologi Molekuler Prinsip Dasar Analisis. Erlangga. Jakarta.

Yusuf F, Ilyas S, Damanik HAR, Fatchiyah (2016) Microbiota composition, HSP70 and Caspase-3 expression as marker for colorectal cancer patients in Aceh, Indonesia. The Indonesian Journal of Internal Medicine 48(4): 289-299. PMID: 28143990.

Sandhya P, Danda D, Sharma D, Scaria V (2016) Does the buck stop with the bugs?: an overview of microbial dysbiosis in rheumatoid arthritis. International Journal of Rheumatic Diseases 19: 8–20.

Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, Abe F, Osawa R (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a crosssectional study. BMC Microbiology 16(1): 90. doi: 10.1186/s12866-016-0708-5.

Jandhyala SM, Talukdar R., Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN (2015) Role of the normal gut microbiota. World Journal of Gastroenterology 21(29):8787. doi: 10.3748/wjg.v21.i29.8787.

Nagpal R, Tsuji H, Takahashi T, Nomoto K, Kawashima K, Nagata S, Yamashiro Y (2017) Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breastfed infants over the first 3 years of life: a quantitative bird’s-eye view. Frontiers in Microbiology 8:1388. doi:10.3389/fmicb.2017.01388.

Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley RE (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799. DOI 10.1016/j.cell.2014.09.053.

Bäumler, A.J. & Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016; 535(7610):85–93. doi:10.1038/nature18849.

Liu X, Zeng B, Zhang J, Li W, Mou F, Wang H (2016) Role of the gut microbiome in modulating arthritis progression in mice. Sci Rep 6: 30594. doi:10.1038/srep30594.

Armentero MT, Levandis G, Nappi G, Bazzini E, Blandini F (2006) Peripheral inflammation and neuroprotection: systemic pretreatment with complete Freund's adjuvant reduces 6-hydroxydopamine toxicity in a rodent model of Parkinson's disease. Neurobiol 24(3): 492–505. doi:10.1016/j.nbd.2006.08.016.

Gu Y, Yang J, Ouyang X (2008) Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells. Eur J Immunol 38(7): 1807–1813. doi:10.1002/eji.200838331.

Pfeuffer M, Schrezenmeir, J (2007) Milk and the metabolic syndrome. Obes. Rev 8: 109–118.

Amati L, Marzulli G, Martulli M, Tafaro A, Jirillo F, Pugliese V, Martemucci G, D’Alessandro AG, Jirillo E (2010) Donkey and Goat Milk Intake and Modulation of the Human Aged Immune Response. Current Pharmaceutical Design 16: 864-869. doi: 10.2174/138161210790883651.

Serino M, Luche E, Chabo C, Amar J, Burcelin R. Intestinal microflora and metabolic diseases. Diabetes Metab 35(4): 262-72. doi: 10.1016/j.diabet.2009.03.003.

Strzepa A, Majewska-Szczepanik M, Lobo FM (2017) Broad spectrum antibiotic enrofloxacin modulates contact sensitivity through gut microbiota in a murine model. J Allergy Clin Immunol 140(1): 121–133. doi: 10.1016/j.jaci.2016.11.052.

Wu GD, Chen J, Hoffmann C (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334 (6052):105–108. doi:10.1126/science.1208344.

Seksik P, Rigottier-Gois L, Gramet G (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52(2): 237–242. doi:10.1136/gut.52.2.237.

Amdekar S, Singh V, Singh R, Sharma P, Keshav P, Kumar A (2011) Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines. J Clin Immunol 31: 141–54. doi: 10.1007/s10875-010-9457-7.

Bajaj BK, Claes IJ, Lebeer S (2015) Functional mechanisms of probiotics. J. Microbiol. Biotechnol. Food Sci 4: 321–327. doi: 10.15414/jmbfs. 2015.4.4.321-327.

Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18: 242–5.

Alipour B, Homayouni-Rad A, Vaghef-Mehrabany E, Sharif SK, Vaghef Mehraany L, Asghari-Jafarabadi M (2020) Effects of Lactobacillus casei supplementation on disease activity and inflammatory cytokines in rheumatoid arthritis patients: a randomized double-blind clinical trial. Int J Rheum Dis 17:519–27. doi: 10.1111/1756-185X.12333.

Bdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR (2008) Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest 118: 205–16. doi: 10.1172/JCI32639.

Lievin-Le MV, Servin AL (2006) The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev 19: 315–337. doi:10.1128/CMR.19.2.315-337.2006.

Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol 90: 859-904. doi: 10.1152/physrev.00045.2009.

Stecher B, Hardt WD (2008) The role of microbiota in infectious disease. Trends Microbiol. 16: 107-114. doi: 10.1152/physrev.00045.2009.

Cotter PD, Ross RP, Hill C (2013) Bacteriocins a viable alternative to antibiotics?. Nat. Rev. Microbiol 11:95–105. doi: 10.1038/nrmicro2937.

Dobson A, Cotter PD, Ross RP, Hill C (2012) Bacteriocin production: a probiotic trait?. Appl. Environ. Microbiol 78:1–6. doi: 10.1128/AEM.05576-11.

O’Shea EF, Cotter PD, Stanton C, Ross RP, Hill C (2012) Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int. J. Food Microbiol 152: 189–205.

Downloads

Published

2020-08-27

Issue

Section

Articles