Efek Pelaparan dan Akumulasi Polifosfat terhadap Biopresipitasi Uranium pada Bacillus cereus A66
DOI:
https://doi.org/10.21776/ub.biotropika.2018.006.02.05Keywords:
Pelaparan polifosfat, biopresipitasi uranium, Bacillus cereusAbstract
Pelaparan dan akumulasi polifosfat pada bakteri diduga dapat meningkatkan biopresipitasi uranium. Tujuan penelitian ini adalah untuk mengetahui efek pelaparan dan akumulasi polifosfat terhadap peningkatan biopresipitasi uranium pada Bacillus cereus A66. Pada penelitian ini B. cereus A66 ditumbuhkan terlebih dahulu (prakultur) dalam Tryptone Glucose Yeast Extract (TGY), pada suhu ruang (± 28ºC) hingga fase logaritmik (± 16 jam). Pada perlakuan pertama, prakultur B. cereus A66 diberi perlakuan pelaparan fosfat dalam medium P-free, selanjutnya dipindahkan ke medium P-uptake untuk akumulasi fosfat. Untuk mengamati biopresipitasi uranium, sel bakteri dipindahkan ke dalam larutan uranium 1 mM. Pada perlakuan kedua, prakultur B. cereus A66 langsung dipindahkan ke dalam larutan uranium tanpa fase pelaparan dan akumulasi polifosfat. Sedangkan pada perlakuan ketiga, B. cereus A66 tanpa fase pelaparan dikultur dalam medium P-uptake kemudian dipindahkan ke larutan uranium. Pada perlakuan keempat, B. cereus A66 dikondisikan dengan pelaparan fosfat dalam medium P-free, diikuti dengan pemindahan ke dalam larutan uranium. Perlakuan kedua, ketiga dan keempat dirancang untuk mengkonfirmasi efek perlakuan pertama dalam penelitian ini. Hasil penelitian menunjukkan bahwa B. cereus A66 yang mengalami pelaparan fosfat dapat mengakumulasi fosfat delapan kali lebih banyak ketika dipindahkan ke medium P-uptake, dibandingkan dengan B. cereus A66 yang tidak mengalami pelaparan fosfat. Selain itu, B. cereus A66 yang mengakumulasi lebih banyak fosfat juga menunjukkan peningkatan biopresipitasi uranium sebesar 1,5 kali lebih banyak dibandingkan dengan B. cereus A66 yang tidak mengalami pelaparan fosfat. Fenomena ini diyakini digerakkan oleh metabolisme polifosfat yang dikontrol oleh aktivitas gen PPK dan PPX. Secara keseluruhan hasil penelitian ini menunjukkan bahwa semakin banyak polifosfat terakumulasi dalam sel, semakin meningkat respon biopresipitasi uranium dalam hal jumlah uranium yang diambil dari larutan dan efisiensi waktu pengambilannya. Strategi ini dapat dikembangkan lebih lanjut untuk bioremediasi air dan tanah yang terkontaminasi uranium.
References
Newsome, L., K. Morris, and J.R. Lloyd. 2014. The Biogeochemistry and Bioremediation of Uranium and Other Priority Radionuclids. Journal Chemical Geology, 363:164-184
Merrour, M.L. and S. Selnska-Pobell. 2008. Bacterial Interaction With Uranium : An Environmental Perspective. Journal of Contaminant Hydrology, 102:285-295
Martinez, R.J., M.J. Beazley, and P.A. Sobecky. 2014. Review Article : Phosphate – Mediated Remediation of Metals and Radionuclide, Advance in Ecology 2014:1-14. http; //dx.doi.org/10.1155/2014/7869 29).
Kulkarni, S., C.S. Misra, A. Gupta, A. Ballai, and S.K. Apte. 2016. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation. Applied and Environmental Microbiology. 82(16): 4965 -4974
Macaskie, L.E., R.M. Empson, A.K Cheetham, C.P. Grey, A.I. Skarmulis. 1992. Uranium Bioaccumulation by A Citrobacter sp as a Result of Enzymically – Mediated Growth of Polycrystalline HUO2PO4. Journal Science. 257:782-784
Macaskie, I.E. and A.C.R. Dean. 1982. Cadmium Accumulation by Microorganisms. Environmental Technology Letters. 3(2):49-56
Macaskie, I.E. and A.C.R. Dean. 1985. Strontium Accumulation by Immobilized Cells Of A Citrobacter sp. Biotechnology Letters. 7(9):627-630.
Jeong, B.C., P.S. Poole, A.C.Willis, and I.E. Macaskie. 1998. Purification and Characterization of Acid Type Phosphatases from a Heavy Metal – Accumulating Citrobacter sp. Archives of Microbiology. 169(2): 166-173
Mino, T. 2000. Microbial Selection Of Polyphosphate – Accumulating Bacteria in Activated Sludge Waste Water Treatment Processes for Enhanced Biological Phosphate Removal. Biochemistry. 63(3): 341-348
Miyake, T., T. Shiba, A. Kameda, Y. Ihara, M. Munekata, K. Ishige, and T Noguchi. 1999. The Gene for an Exopolyphosphatase of Pseudomonas aeruginosa. DNA Research. 6: 103-108
Seufferheld, M.J., H.M. Alvarez, and M.F. Farias. 2008. Role of Polyphosphates in Microbial Adaptation to Extreme Environments. Applied and Environmental Microbiology. 74(19): 5867-5874
Suzuki, Y. and J.F. Banfield. 2004. Resistance and Accumulation Of Uranium By Bacteria from a Uranium -Contaminated Site. Journal Geomicrobiology. 21: 113-121
Vanveen, H.W., T. Abee, G.J.J. Kortstee, W.N. Konings, and A.J.B. Zehnder. 1993. Characterization of Two Phosphate Tramsport Systems in Acinetobacter johnsonii 210A. Journal of Bacteriology. 175(1): 200-206
Renninger, N., R. Knopp, H. Nitsche, D.S. Clark, and J.D Keasling. 2004. Uranyl Precipitation by Pseudomonas aeruginosa Via Controlled Polyphosphate Metabolism. Applied and Environmental Microbiology. 12(12): 7404-7412
Octavia, B., T. Yuwono, and A. Taftazani. 2018. Isolasi dan Identifikasi Molekuler Bakteri Toleran Uranium yang Berpotensi dalam Biopresipitasi Uranium. Ganendra Journal of Nuclear Science and Technology. 21(1): 45-53
Appukuttan, D., A.S. Rao, and S.K. Apte. 2006. Engineering of Deinococcus radiodurans R1 for Bioprecipitation of Uranium from Dilute Nuclear Waste. Applied and Environmental Microbiology. 72(12): 7873-7878
Saheki, S., A. Takeda, and T. Shimazu. 1985. Assay of Inorganic Phosphate in the Mild pH Range, Suitable for Measurement of Glycogen Phosphorylase Activity. Analytical Biochemistry. 14: 277-281
Aravind, J., T.Saranya, and P. Kanmani. 2015. Optimizing the production of polyphosphate from Acinetobacter towneri. Global Journal Environmental Science Manage. 1(1): 63-70.
Rustrian, E., J.P. Delgenes, and R. Moletta. 1997. Phosphorus Release by Pure Cultures of Acinetobacter sp. : Effect of the Growth Stage with Cells Cultivated on Various Carbon Sources. Letters In Applied Micrbiology. 24: 144-148
Gavigan, J.A., L.M. Marshall, and A.D.W. Dobson. 1999. Regulation Of Plyphosphate Kinase Gene Expression In Acinetobacter baumanii 252. Microbiology. 145: 2931-2937
Keasling, J.D., S.J. Van Dien, P. Trelstad, N. Renninger, and K. Mc. Mahon. 1999. Review: Application of Polyphosphate Metabolism to Environmental and Biotechnological Problems. Biochemistry. 65(3): 324-331
Trelstad, P.L., P. Purdhani, W. Geibdorfer, W. Hillen, and J.D. Keasling,. 1999. Polyphosphate kinase of Acinetobacter sp. Strain ADP1: Purification and Characterization of the Enzyme and its Role during changes in extracellular phosphate levels. Applied and Environmental Microbiology. 65(9): 3780-3786
Geibdorfer,W., A. Ratajczak, and W. Hillen. 1998. Transcription of ppk from Acinetobacter sp. Strain ADP1, Encoding a Putative Polyphosphate Kinase is induced by Phosphate Starvation. Applied and Environmental Microbiology. 64(3): 896-901
Kulkarni,S., Misra, C.S., Gupta,A., Ballai, A., and Apte, S.K.2016. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation. Applied and Environmental Microbiology. 82(16): 4965-4974
VanVeen, H.W., Abee, Tj, Kortstee, G.JJ., Pereira, H., Konimgs, W.N., and Zehnder, A.J.B. 1994. Generation of a Proton Motive Force by the Excretion of Metal-Phosphate in the Polyphosphate-accumulating Acinetobacter johnsonii Strain 210A. The Journal of Biological Chemistry. 269(47): 29509-29514.
Gavigan, J.A., Marshall, L.M., and Dobson, A.D.W. 1999. Regulation Of Plyphosphate Kinase Gene Expression In Acinetobacter baumanii 252. Microbiology. 145: 2931-2937
Downloads
Published
Issue
Section
License
Copyright and Attribution:
Articles in Biotropika: Journal of Tropical Biology are under Creative Commons Attribution (CC-BY-SA) copyright. The work has not been published before (except in the form of an abstract or part of a published lecture or thesis) and it is not under consideration for publication elsewhere. When the manuscript is accepted for publication in this journal, the authors agree to the automatic transfer of the copyright to the publisher.
Journal of Biotropika: Journal of Tropical Biology is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Permissions:
Authors wishing to include figures, tables, or text passages that have already been published elsewhere and by other authors are required to obtain permission from the copyright owner(s) for both the print and online format and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from one of the authors.
Ethical matters:
Experiments with animals or involving human patients must have had prior approval from the appropriate ethics committee. A statement to this effect should be provided within the text at the appropriate place. Experiments involving plants or microorganisms taken from countries other than the author's own must have had the correct authorization for this exportation.