Diversity and Potential Analysis of Liquid Biopesticide Bacteria for Fusarium sp. Control of Shallot -Basal Rot

Authors

  • Nur Aini Universitas Brawijaya
  • Suharjono Universitas Brawijaya

DOI:

https://doi.org/10.21776/ub.biotropika.2024.012.01.03

Keywords:

antagonistic bacteria, biopesticide, Fusarium, shallot

Abstract

Shallot basal rot disease (Allium cepa L.) caused by the fungus Fusarium causes many crop losses thus control efforts are required. Microbial biopesticides are used as an alternative to control pests and plant pathogens that are environmentally friendly and target-specific. This study aims to evaluate the diversity of liquid biopesticide bacteria and their potential to control the Fusarium sp. pathogen of shallots. This study includes shallot sampling, isolation, and purification of liquid biopesticide bacteria, liquid biopesticide antifungal test, double culture antagonistic test of bacterial isolates against Fusarium sp., and identification of potential bacterial isolates based on 16S rDNA sequence similarity. The results showed that two bacterial isolates, B7 and B2, had the highest importance value index of 94.21% and 90.59%, respectively, with a bacterial diversity index of 1.44. Liquid biopesticide microbial biomass has a high inhibition zone in the antifungal test against Fusarium sp. with an average inhibition zone of 6.45 mm. Bacterial isolate B2 has the highest potential inhibition of 71.3% against Fusarium sp. and was identified as Genus Serratia with a similarity value of 96.79%.

References

Hafizh M, Dwi R, Rambe H, Asbur Y (2021) Pertumbuhan dan produksi tanaman bawang merah (Allium cepa L.) terhadap cekaman kekeringan dan dosis pupuk kendang sapi. AGRILAND Jurnal Ilmu Pertanian 9(1): 7–11.

Badan Pusat Statistik (2020) Distribusi perdagangan komoditas bawang merah Indonesia 2020. Jakarta, BPS RI.

Kaary K, Rumahlewang W, Tuhumury GNC (2022) Kejadian penyakit pada tanaman bawang merah. Jurnal Kalwedo Sains (KASA) 3(1): 1–7.

Sintayehu A, Sakhuja PK, Fininsa C, Ahmed S (2011) Management of fusarium basal rot (Fusarium oxysporum f. sp. cepae) on shallot through fungicidal bulb treatment. Crop Protection 30(5): 560–565. doi: 10.1016/j.cropro.2010.12.027.

Fadhilah S, Wiyono S, Surahman M (2014) Pengembangan teknik deteksi Fusarium patogen pada umbi benih bawang merah (Allium ascalonicum) di laboratorium. J Hort 24(2): 171–178.

Le D, Audenaert K, Haesaert G (2021) Fusarium basal rot: profile of an increasingly important disease in Allium spp. Tropical Plant Pathology 46(3): 241–253. doi: 10.1007/s40858-021-00421-9.

Sittisart P, Yossan S, Prasertsan P (2021) The causal agent of Fusarium disease infested shallots in Java Islands of Indonesia. E3S Web of Conferences 232(03003).

Savary S, Willocquet L, Pethybridge SJ et al. (2019) The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution 3(3): 430–439. doi: 10.1038/s41559-018-0793-y.

Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathology 60 (1): 2–14. doi: https://doi.org/10.1111/j.1365-3059.2010.02411.x.

Kumar J, Ramlal A, Mallick D, Mishra V (2021) An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants. doi: 10.3390/plants10061185.

Arakere UC, Jagannath S, Krishnamurthy S, Srinivas C, Konappa N (2022) Microbial bio-pesticide as sustainable solution for management of pests: achievements and prospects. Biopesticides 183–200. doi: 10.1016/B978-0-12-823355-9.00016-X.

Dimetry NZ (2014) Different plant families as bioresource for pesticides. In: Singh D (ed) Advances in Plant Biopesticides. New Delhi, Springer India, pp 1–20.

Archana HR, Darshan K, Amrutha Lakshmi MA, Ghoshal T, Bashayal BM, Aggarwal R (2022) 22 - Biopesticides: A key player in agro-environmental sustainability. In: Soni R, Suyal DC, Yadav AN, Goel R (eds) Trends of Applied Microbiology for Sustainable Economy. Academic Press, pp 613–653.

Ruiu L (2018) Microbial biopesticides in agroecosystems. Agronomy 8(11): 1–12. doi: 10.3390/agronomy8110235.

Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Chapter 15-Microbial biopesticides: Current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, pp 243–282.

Booth J, Schenk PM, Mirzaee H (2022) Microbial biopesticides against bacterial, fungal and oomycete pathogens of tomato, cabbage and chickpea. Applied Microbiology 2(1): 288–301. doi: 10.3390/applmicrobiol2010021.

Krishna M, Khemchandani T, Raja BR (2013) Extraction of a novel biopesticide obtained from agricultural weeds useful for medicinal plants. Journal of Medicinal Plants Research 7 (30): 2236–2242. doi: 10.5897/jmpr10.957.

Kalman B, Abraham D, Graph S, PerlTreves R, Harel YM, Degani O (2020) Isolation and identification of Fusarium spp., the causal agents of onion (Allium cepa) basal rot in northeastern Israel. Biology (Basel). doi: 10.3390/biology9040069.

Alastruey Izquierdo A, Melhem MSC, Bonfietti LX, Rodriguez-Tudela JL (2015) Susceptibility test for fungi: clinical and laboratorial correlations in medical mycology. Revista do Instituto de Medicina Tropical de Sao Paulo 57: 57–64.

Naufal A, Kusdiyantini E, Raharjo B (2017) Identifikasi jenis pigmen dan uji potensi antioksidan ekstrak pigmen bakteri Serratia marcescens hasil isolasi dari sedimen Sumber Air Panas Gedong Songo. Bioma 19(2): 95–103.

Peano A, Pasquetti M, Tizzani P, Chiavassa E, Guillot J, Johnson E (2017) Methodological issues in antifungal susceptibility testing of Malassezia pachydermatis. Journal of Fungi 3(3): 1–15. doi: 10.3390/jof3030037.

Ariani IF, Abadi AL, Aini LQ (2020) Karakterisasi bakteri patogen penyebab layu pada tanaman bawang merah (Allium ascalonicum L.). Journal Viabel Pertanian 14 (1): 69–75.

Nguyen H, Lamb D, Herbohn J, Firn J (2014) Designing mixed species tree plantations for the tropics: Balancing ecological attributes of species with landholder preferences in the Philippines. PLoS ONE 9(4): 1–15. doi: 10.1371/journal.pone.0095267.

Aulia RD, Rita ESD, Nurwahyunani A (2018) Analisis keanekaragaman bakteri pendegradasi selulosa dari serasah daun (Rhizophora stylosa) di hutan mangrove Desa Pasar Banggi Kabupaten Rembang. Prosiding Seminar Nasional Sains dan Entrepreneurship V. pp 191–197.

Ningrum AM, Chasani AR (2021) Numerical phenetic and phylogenetic relationships in silico among brown seaweeds (Phaeophyceae) from Gunungkidul, Yogyakarta, Indonesia. Biodiversitas 22 (6): 3057–3064. doi: 10.13057/biodiv/d220607.

Zhao X, Hou D, Xu J, Wang K, Hu Z (2022) Antagonistic activity of fungal strains against Fusarium crown rot. Plants. doi: 10.3390/plants11030255.

Sutoyo S, Ardyati T, Subandi S, Suharjono S (2019) Isolation and identification of keratinolytic bacteria from Jember, Indonesia as a biodegradation agent of chicken feather wastes. Asian J Agric and Biol 7(4): 491–500.

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870–1874.

Leslie JF, Summerell BA (2006) The Fusarium Laboratory Manual. New Jersey, Blackwell Publishing.

Fonseca Guerra IR, Chiquillo-Pompeyo JC, Benavides Rozo ME, Diaz Ovalle JF (2022) Fusarium spp. associated with Chenopodium quinoa crops in Colombia. Scientific Reports 12(1): 1–14. doi: 10.1038/s41598-022-24908-w.

Akhter A, Hage Ahmed K, Soja G, Steinkellner S (2016) Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant and Soil 406 (1–2): 425–440. doi: 10.1007/s11104-016-2948-4.

Sun ZB, Zhang J, Sun MH, Li SD (2019) Identification of genes related to chlamydospore formation in Clonostachys rosea 67-1. MicrobiologyOpen 8(1): e00624. doi: https://doi.org/10.1002/mbo3.624.

Kachhawa D (2017) Microorganisms as a biopesticides. Journal of Entomology and Zoology Studies 5(3): 468–473.

Parveen S, Nawaz S, Siddique S, Shahzad K (2013) Composition and antimicrobial activity of the essential oil from leaves of Curcuma longa L. Kasur variety. Indian Journal of Pharmaceutical Sciences 75(1): 117–122.

Hu Y, Luo J, Kong W, Zhang J, Logrieco AF, Wang X, Yang M (2015) Uncovering the antifungal components for m turmeric (Curcuma longa L.) essential oil as Aspergillus flavus fumigants by partial least squares. RSC Advances 5(52): 41967–41976. doi: 10.1039/c5ra01725d.

Chen C, Long L, Zhang F, Chen Q, Chen C, Yu X, Liu Q, Bao J, Long Z (2018) Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLoS One. doi: 10.1371/journal.pone.0194284.

Marchi LB, de Castro Dornellas F, Polonio JC, Pamphile J, Monteiro A, Goncalves O, Perdoncini M (2019) Antifungal activity of Curcuma longa L. (Zingiberaceae) against degrading filamentous fungi. Chemical Engineering Transactions 75 319–324. doi: 10.3303/CET1975054.

Miah MM, Das P, Ibrahim Y, Shajib MS, Rashid MA (2018) In vitro antioxidant, antimicrobial, membrane stabilization and thrombolytic activities of Dioscorea hispida Dennst. European Journal of Integrative Medicine 19: 121–127. doi: 10.1016/j.eujim.2018.02.002.

Meena RK, Pareek A, Meena RR (2016) Antimicrobial activity of Aegle marmelos (Rutaceae) plant extracts. International Journal of MediPharm Research 2(1): 1–5.

Ibrahim NA, El Sakhawy FM, Mohammed MMD, Farid MA, Abdelwahed NAM, Deabes DA (2015) Chemical composition, antimicrobial and antifungal activities of essential oils of the leaves of Aegle marmelos (L.) Correa growing in Egypt. Journal of Applied Pharmaceutical Science 5(2): 001–005. doi: 10.7324/JAPS.2015.50201.

Zapata Narvaez YA, Gomez Marroquin MR, Botina Azain BL (2020) Evaluation of microbial antagonists and essential oils in the control of Sclerotium cepivorum in garlic under controlled conditions. Mexican Journal of Phytopathology 38(2): 1–13. doi: 10.18781/r.mex.fit.2002-2.

Nollet LML, Rathore HS (2015) Biopesticides Handbook. Florida, Taylor and Francis Group, LLC.

Arrebola E, Sivakumar D, Bacigalupo R, Korsten L (2010) Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Protection 29(4): 369–377. doi: 10.1016/j.cropro.2009.08.001.

Sari GNP, Pustika AB, Solichah C, Wicaksono D, Widyayanti S, Sudarmaji, Yolanda K (2023) The effect of antagonistic microbial and seed bulb-size on fusarium wilt and yield of shallot. E3S Web Conf 467 1006. doi: 10.1051/e3sconf/202346701006.

Yu SX, Pang YL, Wang YC, Li JL, Qin S (2018) Distribution of bacterial communities along the spatial and environmental gradients from Bohai Sea to northern Yellow Sea. PeerJ 2018(1): 1–12. doi: 10.7717/peerj.4272.

Djatnika I (2012) Seleksi bakteri antagonis untuk mengendalikan layu Fusarium pada tanaman Phalaenopsis. J Hort 22(3): 276–284.

Karim H, Hamka L, Kurnia N, Junda M (2018) Effectivity of antagonistic bacteria in controlling of Fusarium Wilt diseases of banana (Musa paradisiaca) by in vitro. J Phys Conf Ser. Institute of Physics Publishing, pp 1–2.

Dwivedi GR, Sisodia BS, Shikha (2019) Chapter 22-Secondary metabolites: metabolomics for secondary metabolites. In: Gupta VK, Pandey A (eds) New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam, Elsevier, pp 333–344.

Larasati A, Ryandini D, Oedjijono O, Kusharyati DF (2019) Optimization of medium and incubation time in the production of antibacterial compounds by Streptomyces sp. SA404. Proceedings of the 10th International Seminar and 12th Congress of Indonesian Society for Microbiology (ISISM 2019). Atlantis Press International B.V., pp 37–43.

Li P, Kwok AHY, Jiang J, Ran T, Xu D, Wang W, Leung FC (2015) Comparative genome analyses of Serratia marcescens FS14 reveals its high antagonistic potential. PLoS ONE 10(4): 1–22. doi: 10.1371/journal.pone.0123061.

Guo Z, Zhang X, Wu J, Xu M, Dian xu C, Zhang Z, Li X, Chi Y, Wan S (2020) In vitro inhibitory effect of the bacterium Serratia marcescens on Fusarium proliferatum growth and fumonisins production. Biological Control 143: 1–9. doi: 10.1016/j.biocontrol.2020.104188.

Khaldi RE, Daami Remadi M, Hamada W, Somai L, Cherif M (2015) The potential of Serratia marcescens: an indigenous strain isolated from date palm compost as biocontrol agent of Rhizoctonia solani on potato. J Plant Pathol Microbiol S3: 1–5. doi: 10.4172/2157-7471.S3-006.

Moon C, Seo DJ, Song YS, Hong SH, Choi SH, Jung WJ (2017) Antifungal activity and patterns of N-acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1. Microbial Pathogenesis 113: 218–224. doi: 10.1016/j.micpath.2017.10.039.

Beier S, Bertilsson S (2013) Bacterial chitin degradation-mechanisms and ecophysiological strategies. Frontiers in Microbiology 4(149): 1–12.

El Hassni M, El Hadrami A, Daayf F, Barka EA, El Hadrami I (2004) Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defence reactions in date palm roots. Phytopathologia Mediterranea 43: 195–204.

Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C (2021) Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules 26(23): 1–27.

Clements T, Ndlovu T, Khan W (2019) Broad-spectrum antimicrobial activity of secondary metabolites produced by Serratia marcescens strains. Microbiological Research 229: 1–10.

Downloads

Published

2024-04-19

Issue

Section

Articles