Computational Insight on Bioactive Compound Potential Activity of Kenitu (Chrysophyllum cainito L.) Leaves as PPAR-y Antagonist for Obesity

Authors

  • Nabila Nur Rosyada Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia
  • Regina Shania Andyni Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia
  • Cicin Vinolia Alvionita Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia
  • Sekararum Narwasthu Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia
  • Robiatul Adawiyah
  • Feri Eko Hermanto
  • Nia Kurniawan
  • Fatchiyah Fatchiyah

DOI:

https://doi.org/10.21776/ub.biotropika.2024.012.02.03

Keywords:

isorhamnetin, obesity, PPAR-?, kenitu

Abstract

Studies reported that kenitu (Chrysophyllum cainito) has the potential as an anti-obesity agent. However, the mechanism underlying that activity remains unknown. On the other hand, targeting PPAR-y has played a beneficial role in regulating obesity. Therefore, this study will explain the anti-obesity potential of natural compounds from C. cainito in modulating obesity through inhibition of PPAR-y. Molecular docking was employed to identify the possibility of several compounds binding with the PPAR-y. Moreover, the stability of the interaction between PPAR-y and each compound was also evaluated using molecular dynamics analysis. The result showed that beta-sitosterol, lupeol, myricitrin, quercitrin, rutin, vitamin A, epicatechin, and chlorogenic acid are worthy of potential as PPAR-y antagonists. In advance, molecular dynamics simulations revealed that chlorogenic acid, quercitrin, and epicatechin were the most stable compounds to interact as an inhibitor of PPAR-y. In conclusion, compounds from star apple have some potential to improve the health status of patients’ obesity through PPAR-y antagonist activity.

Author Biography

Fatchiyah Fatchiyah

the first rank

References

Cardel MI, Atkinson MA, Taveras EM, Holm JC, Kelly AS (2020) Obesity treatment among adolescents: a review of current evidence and future directions. JAMA Pediatr 174(6): 609–617. doi: 10.1001/jamapediatrics.2020.0085.

Endalifer ML, Diress G (2020) Epidemiology, predisposing factors, biomarkers, and prevention mechanism of obesity: a systematic review. Journal of Obesity 2020(4): 1-8. doi: 10.1155/2020/61343 62.

Sangaji N, Wiyono VH, Mulyaningsih T (2022) Socio-economic determinants of obesity in Indonesia: analysis of IFLS 2014 data. Budapest International Research and Critics Institute (BIRCI-Journal): Humanities and Social Sciences 5 (1): 1939–1947. doi: 10.332 58/birci.v5i1.3794.

Malik VS, Willet WC, Hu FB (2020) Nearly a decade on — trends, risk factors and policy implications in global obesity. Nat Rev Endocrinol 16 (11): 615–616. doi: 10.1038 /s41574-020-00411-y.

Sharma SP, Chung HJ, Kim HJ, Hong ST (2016) Paradoxical Effects of Fruit on Obesity. Nutrients 8(10): 633. doi: 10.3390/ nu8100633.

Alinia S, Hels O, Tetens I (2009) The potential association between fruit intake and body weight--a review. Obes Rev 10(6):639–647. doi: 10.1111/j.1467789X.2009.00582.x.

Hebden L, O’Leary F, Rangan A, Singgih Lie E, Hirani V, Allman-Farinelli M (2017) Fruit consumption and adiposity status in adults: A systematic review of current evidence. Crit Rev Food Sci Nutr 57(12): 2526–2540. doi: 10.1080/10408398.2015.1012290.

Guyenet SJ (2022) Impact of Whole, Fresh Fruit Consumption on Energy Intake and Adiposity: A Systematic Review, Frontiers in Nutrition 6(66): 1-19. doi: 10.3389/fnut.2019.00066.

Doan HV, Le TP (2020) Chrysophyllum cainito: A Tropical Fruit with Multiple Health Benefits. Evidence-Based Complementary and Alternative Medicine 2020(7259267): 1-9. doi: 10.1155/2020/7259267.

Briones AT, Chichioco-Hernandez CL (2017) Lipase inhibitory activity of Carica papaya, Chrysophyllum cainito, Corcorus olitorius, Cympogon citrates and Syzygium cumini extracts. Food Res 2(1): 51–55. doi: 10.26656/fr.2017.2(1).118.

Aumeeruddy M Z, Mahomoodally MF (2021) Traditional herbal medicines used in obesity management: a systematic review of ethnomedicinal surveys. Journal of Herbal Medicine 28 (2999): 1-22. doi: 10.1016/j.hermed.2021.100435.

Alonso-Castro AJ, Domínguez F, Zapata-Morales JR, Carranza-Álvarez C (2015) Plants used in the traditional medicine of Mesoamerica (Mexico and Central America) and the Caribbean for the treatment of obesity. Journal of Ethnopharmacology 175(15): 335–345. doi: org/10.1016/j.jep.2015.09.029.

Lailiyah NN, Ibrahim MD, Fitriani CA, Hermanto FE (2021) Anti-obesity properties of black pepper (Piper nigrum): completing puzzle using computational analysis. JSMARTech 2(3): 101–106. doi: 10.21776/ub.jsmartech.2021.002.03.101

Liu TT, Liu XT, Chen QX, Shi Y (2020) Lipase inhibitors for obesity: a review. Biomedicine & Pharmacotherapy 128 (110314): 1-9. doi: 10.1016/j.biopha.2020. 110314.

Rieusset J, Touri F, Michalik L, Escher P, Desvergne B, Niesor E, Wahli W (2002) A new selective peroxisome proliferator-activated receptor gamma antagonist with antiobesity and antidiabetic activity. Mol Endocrinol 16(11): 2628–2644. doi: 10.1210/me.2002003 6.

Goto T, Kim YI, Takahashi N, Kawada T (2013) Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors. Mol Nutr Food Res 57(1): 20–33. doi: 10.1002/mnfr. 201200522.

Gong Z, Huang C, Sheng X, Zhang Y, Li Q, Wang M W, Peng L, Zang Y Q (2009) The role of tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor gamma antagonism. Endocrinology 150(1): 104–113. doi: 10. 1210/en.2008 -0322.

Wang S, Lin Y, Gao L, Yang Z, Lin J, Ren S, Li F, Chen J, Wang Z, Dong Z, Sun P, Wu B (2022) PPAR-? integrates obesity and adipocyte clock through epigenetic regulation of Bmal1. Theranostics 12(4): 1589–1606. doi: 10.7150/thno.69054.

Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Bluher M, Griffin PR, Spiegelman BM (2010) Obesity-linked phosphorylation of PPAR? by cdk5 is a direct target of the anti-diabetic PPAR? ligands. Nature 466(7305): 451–456. doi: 10.1038 /nature09291.

Hogh KLN, Craig MN, Uy CE, Nygren H, Asadi A, Speck M, Fraser JD, Rudecki AP, Baker RK, Oreši? M, Gray SL (2014) Overexpression of PPAR? specifically in pancreatic ?-cells exacerbates obesity-induced glucose intolerance, reduces ?-cell mass, and alters islet lipid metabolism in male mice. Endocrinology 155 (10): 3843–3852. doi: 10.1210/en.2014-1076.

Zhang Y, Gu M, Cai W, Yu L, Feng L, Zhang L, Zang Q, Wang Y, Wang D, Chen H, Tong Q, Ji G, Huang C (2016) Dietary component isorhamnetin is a PPAR? antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency. Sci Rep 6(1): 1-13. doi: 10.1038/srep19288.

Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods in Molecular Biology 1263: 243–250. doi: 10.1007/978-1-4939-2269-7_19.

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31(2): 455–461. doi: 10.1002/ jcc.21334.

Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60(8): 1355–1363. doi: 10.1107/S090744490 4011679.

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2 (2015): 19–25. doi: 10.1016/j.softx.2015.06.001.

Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13): 1656–1676. doi: 10.1002/jcc.20090.

Li SZ, Zeng SL, Liu EH (2022) Anti-obesity natural products and gut microbiota. Food Research International 151(2022) 110819: 1-14. doi: 10.1016/j.foodres.2021.110819.

Boccellino M, D’Angelo S (2020) Anti-obesity effects of polyphenol intake: current status and future possibilities. Int J Mol Sci 21 (16): 1-24. doi: 10.3390/ijms21165642.

Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7 (2): 146–157. doi: 10.2174/157340911795677602.

Fu Y, Zhao J, Chen Z (2018) Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: a case of oligopeptide binding protein. Comput Math Methods Med 2018 (3502514): 1-12. doi: 10.1155/2018/3502514.

Sargsyan K, Grauffel C, Lim C (2017) How molecular size impacts RMSD applications in molecular dynamics simulations. J Chem Theory Comput 13: 1518–1524. doi: 10.1021/acs.jctc.7b00028.

Liu K, Kokubo H (2017) Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: a cross-docking study. J. Chem. Inf. Model 57: 2514–2522. doi: 10.1021/acs.jcim.7b00412.

Yun S, Guy HR (2011) Stability tests on known and misfolded structures with discrete and all atom molecular dynamics simulations. J Mol Graph Model 29: 663–675. doi: 10.1016/j.jmgm.2010.12.002.

Shen Y, Chi H, Zhou J, Luo L, Tu Q, Qi C, Gao Z (2019) Structure-based stepwise screening of PPAR? antagonists as potential competitors with NCOA1 coactivator peptide for PPAR? CIS site. International Journal of Peptide Research and Therapeutics 25(4): 1369-1377. doi: 10.1007/s10989-018-9782-x.

Downloads

Published

2024-08-20

How to Cite

Rosyada, N. N., Andyni, R. S., Alvionita, C. V., Narwasthu, S., Adawiyah, R., Hermanto, F. E., Kurniawan, N., & Fatchiyah, F. (2024). Computational Insight on Bioactive Compound Potential Activity of Kenitu (Chrysophyllum cainito L.) Leaves as PPAR-y Antagonist for Obesity. Biotropika: Journal of Tropical Biology, 12(2), 75–86. https://doi.org/10.21776/ub.biotropika.2024.012.02.03

Issue

Section

Articles