DNA Barcoding Ikan Introduksi Khas Telaga Sari, Kabupaten Pasuruan

Authors

  • Dwi Anggorowati Rahayu Jurusan Biologi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Surabaya
  • Endik Deni Nugroho
  • Dwi Listyorini

DOI:

https://doi.org/10.21776/ub.biotropika.2019.007.02.2

Keywords:

basa nukleotida diagnostik, DNA Barcode COI, filogenetik, jarak genetik, variasi genetik

Abstract

Telaga Sari terletak di Purwodadi, Kabupaten Pasuruan yang memiliki kelimpahan jenis ikan introduksi dari Famili Poeciliidae. Anggota Poeciliidae merupakan ikan yang berukuran kecil, live-bearers, memiliki dimorfi seksual dari segi ukuran tubuh dan pola warna. Ikan jantan memiliki gonopodium yang merupakan modifikasi sirip anal, dan ikan betina bunting dan melahirkan. Ikan ini terintroduksi di perairan Indonesia sebagai ikan hias, pengontrol perkembangan nyamuk malaria dan dewasa ini diketahui sebagai model pembelajaran dalam studi biologi. Identifikasi cryptic species menjadi tantangan dalam pengelolaan ikan introduksi baik untuk tujuan konservasi dan budidaya. Penelitian ini bertujuan untuk identifikasi molekuler berdasarkan DNA Barcode COI. Amplifikasi gen target dilakukan dengan menggunakan primer barcode. Analisis identifikasi molekuler melalui kekerabatan pohon filogenetik, similaritas, variasi sekuen DNA, jarak genetik, dan BOLD System. Hasil identifikasi molekuler menunjukkan terbentuk dua klaster besar yang terdiri atas dua klad, spesies yang teridentifikasi sesuai karakter morfologi, yaitu Poecilia reticulata dan Poecilia mexicana dengan indeks kesamaan 90-100%, sedangkan satu spesies teridentifikasi sebagai Poecilia reticulata (100% identik berdasarkan BOLD System) yang seharusnya secara morfologi adalah Xiphoporus helleri. Hasil analisis karakter nukleotida diagnostik ditemukan empat nukleotida untuk Poecilia reticulata, tujuh nukleotida untuk Xiphoporus helleri dan 23 untuk Poecilia mexicana. Diversitas haplotype basa nukleotida sebesar (0,00566) yang terbagi menjadi sembilan haplotype dengan empat haplogroup. Ketepatan identifikasi spesies ikan menjadi kunci utama dalam budidaya, perdagangan, manajemen, konservasi, dan perkembangan ilmu pengetahuan.

References

. Lucinda PHF (2003) Family Poeciliidae, Check list of the freshwater fishes of South and Central America. Edipucrs, Porto Alegre, Brazil, pp: 555-581.

. Tamaru CS, Cole B, Bailey R (2001) A manual for commercial production of the Swordtail Xiphophorus helleri. CTSA Publication/128, Honolulu, pp. 36.

. Canonico GC, Arthington A, McCray JK, Thieme ML (2005) The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 15 (5): 463-483.

. Lintermans M (2004) Human-assisted dispersal of alien freshwater fish in Australia. New Zealand Journal of Marine and Freshwater Research 38 (3): 481-501.

. Koehn JD, MacKenzie RF (2004) Priority management actions for alien freshwater fish species in Australia. New Zealand Journal of Marine and Freshwater Research 38 (3): 457-472.

. Lee CE (2002) Evolutionary genetics of invasive species. Trends in Ecology and Evolution 17 (8): 386- 391.

. Semmens BX, Buhle ER, Salomon AK, Pattengill-Semmens CV (2004) A hotspot of non-native marine fishes: evidence for the aquarium trade as an invasion pathway. Marine Ecology Progress Series 266: 239-244.

. Dudgeon D, Arhtington AH, Gessner MO, Kawabata ZI, Knowler DJ, Leveque, C. Naiman RJ, Prieur-Richards AH, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Review 81 (2): 163-182.

. Parenti LR (1981) A phylogenetic and biogeographic analysis of Cyprinodontiformes fishes (Teleostei, Atherinomorpha). Nature 168 (4): 335-557.

. Hensen RR, Ploeg A, Fossa SA (2010) Standard names for freshwater fishes in the ornamental aquatic industry. OFI educational publication 5. Ornamental Fish International, Netherlands.

. Kallman KD, Walter RB, Morizot DC, Kazianis S (2004) Two new species of Xiphophorus (Poeciliidae) from the Isthmus of Tehuantepec, Oaxaca, Mexico, with a discussion of the distribution of the X. clemenciae clade. American Museum Novitates 3441: 1-34.

. Rahayu DA, Jannah M, Winaris N, Listyorini D (2010) The phylogenetic of Gatul fish (Xiphoporus sp.) in Sari Lake Pasuruan Regency, In Proceedings of the Association for Tropical Biology & Conservation 2010 Meeting, Bali. Indonesia.

. Frankham R, Ballau JD, Briscoes DA (2002) Introduction to conservation genetic. Cambridge University Press, Cambridge, 607 pp.

. Taylor HR, Harrist WE (2012) An emergent science onthe brink of irrelevance: a review of the past 8 years of DNA barcoding. Molecular Ecology Resources 12 (3): 377-388.

. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of The Royal Society B: Biological Sciences 270 (1512): 313-321.

. Rasmussen RS, Morrissey MT, Hebert PDN (2009) DNA barcoding of commercially important salmon and trout species (Oncorhynchus and Salmo) from North America. Journal of Agricultural and Food Chemistry 57 (18): 8379-8385.

. Folmer O, Hoeh BW, Lutz R, Vrijenhoeicatk R (1994) DNA primers for amplification of mitochondrial Cytochrome-c Oxidase Subunit I from diverse Metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 (5): 294-299.

. Zhang DX, Hewitt GM (1997) Assesment of the universality and utility of a set of conserved mitochondrial primers in insect. Insect Molecular Biology 6 (2): 143-150.

. Ward RD, Costa OF, Holmes BH, Steinke D (2008) DNA Barcoding of Shared fish species from the North Atlantic and Australasia: Minimal divergence for most taxa, but Zeus faber and Lepidopus caudatus each probably constitute two spesies. Aquatic Biology 3: 71-78.

. Hubert N, Hanner R, Holm EM, Nicholas E (2008) Identifying Canadian freshwater fishes through DNA Barcodes. PLoS One 3 (6): e2490.

. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA Barcoding Australia’s fish species. Philosophical Transactions of Royal Society B: Biological Sciences 360 (1462): 1847-1857.

. Moreno MV, Ivanova NV, Guiterrez ME, Contreras S, Hebert PDN (2009) Probing diversity in freshwater fishes from Mexico and Guatemala with DNA barcodes. Journal of Fish Biology 74 (2): 377-402.

. Rock J, Costa FO, Walker JD, North WA, Hutchinson FW, Carvalho RG (2008) DNA barcodes of fish of the Scotia Sea, Antartica indicates priorty groups for taxonomic and systematics focus. Antartic Science 20 (3): 253-262.

. Collins RA, Armstrong KF, Meier R, Yi Y, Brown SDJ (2012) Barcoding and border biosecurity: Identifying Cyprinid fishes in the aquarium trade. PLoS ONE 7(1): e28381.

. Kotellat M, Whitten AJ, Kartikasari SN, Wirjoatmodjo S (1993) Freshwater fishes of Western Indonesia and Sulawesi, Periplus, Hong Kong.

. Robert TR (1989) The freshwater fishes of Western Borneo. California Academy of Science, California.

. Ribak MP (2010) Assessing the phylogenetic utility of DNA barcoding using the New Zealand Cicada Genus Kikihia. Thesis. The University of Connecticut.

. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30 (12): 2725-2729.

. Kimura (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 (2): 111-20.

. Bandelts HJ, Forster P, Rohl A (1999) Median Joining Networks for inferring intraspesific phylogenies. Molecular Biological Evolution 16 (1): 37-48. doi: 10.1093/oxfordjournals.molbev.a026036

. Buhay JE (2009) “COI-like†sequences are becoming problematic in molecular systematic and DNA barcoding studies. Journal of Crustacean Biology 29 (1): 96-110.

. Bensasson D, Zhang DX, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends Ecology and Evolution 16 (6): 314-321.

. Arthington AH (1991) Ecological and genetic impacts of introduced and translocated freshwater fishes in Australia. Canadian Journal of Fisheries and Aquatic Sciences 48 (S1): 33-43.

. Lakra WS, Goswami M, Gopalakrishnan A (2009) Molecular identification and phylogenetic relationships of seven Indian Sciaenids (Pisces: Perciformes, Sciaenidae) based on 16S rRNA and cytochrome c oxidase subunit I mitochondrial genes A. Molecular Biology Reports 36 (5): 831-839.

. Beckenbach AT, Thomas WK, Sohrabi H (1990) Intraspecific sequence variation in the mitochondrial genome of rainbow trout (Oncorhynchus mykiss). Genome 33 (1): 13-15.

. Nugroho ED, Nawir D, Amin M, Lestari U (2017) DNA barcoding of Nomei fish (Synodontidae: Harpadon sp.) in Tarakan Island, Indonesia. AACL Bioflux 10 (6):1466-1474.

. Sarkar IN, Thornton JW, Planet PJ (2002) An automated phylogenetic key for classifying homeoboxes. Molecular Phylogenetics and Evolution 24 (3): 388-399.

. Wong EH, Shivji MS, Hanner RH (2009) Identifying sharks with DNA barcodes: Assessing the utility of a nucleotide diagnostic approach. Molecular Ecology Resources 9: 243-256.

. Wong EHK, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Research International 41 (8): 828-837.

. Ribeiro AO, Caires RA, Mariguela CT, Pereira LHG., Hanner R, Oliveira C, Garcia LH, Hanner R, Oliveira C (2012) DNA barcodes identify marine fishes of Sao Paulo State, Brazil. Molecular Ecology Resources 12 (6): 1012-1020.

. Nelson, JS (2006) Fishes of the world (4th ed). John Wiley & Sons, New Jersey, pp. 624.

. Esa BY, Siti, Shapor S, Siti, Khalijah, D, Khairul, Adha AR, Jeffrine RR, Soon, GT (2008) Mitochondrial DNA diversity of Tor Tambraides Valenciennes (Cyprinidae) from five natural populations in Malaysia. Zoological Studies 47 (3): 360-36.

Downloads

Published

2019-08-28

How to Cite

Rahayu, D. A., Nugroho, E. D., & Listyorini, D. (2019). DNA Barcoding Ikan Introduksi Khas Telaga Sari, Kabupaten Pasuruan. Biotropika: Journal of Tropical Biology, 7(2), 51–62. https://doi.org/10.21776/ub.biotropika.2019.007.02.2

Issue

Section

Articles